

Table of Contents

Chapter 10. VBA Programming Fundamentals.. 1
Section 10.1. Introducing Visual Basic for Applications... 2
Section 10.2. Understanding VBA Terminology... 3
Section 10.3. Starting with VBA Code Basics.. 4
Section 10.4. Migrating from Macros to VBA... 5
Section 10.5. Creating VBA Programs... 10
Section 10.6. Understanding VBA Branching Constructs.. 25
Section 10.7. Working with Objects and Collections.. 30
Section 10.8. Looking at Access Options for Developers.. 34
Section 10.9. Summary... 40

Chapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

377

CHAPTER

VBA Programming
Fundamentals

IN THIS CHAPTER
Working with VBA

Reviewing VBA terminology

Understanding VBA code
basics

Moving from macros to VBA

Writing VBA code

Adding branching constructs

Understanding objects and
collections

Understanding developer
options

Most Access developers use macros now and then. Although macros
provide a quick and easy way to automate an application, writing
Visual Basic for applications (VBA) modules is the best way to cre-

ate applications. VBA provides data access, looping and branching, and other
features that macros simply don’t support — or at least don’t support with
the flexibility most developers want. In this chapter, you learn how to use
VBA to extend the power and usefulness of your applications.

On the CD-ROM
Use the database file Chapter10.accdb in this chapter.

Note
Although many readers of this book are experienced Access developers and
are comfortable working with VBA, this chapter and the other chapters in this
part of the book assume that you have no experience with VBA. I include these
chapters to provide you with a firm foundation for many of the techniques I
discuss in later chapters. As you’ll see in Part III and beyond, many advanced
Access techniques simply can’t be implemented without the use of VBA code.

15_475348-ch10.indd 37715_475348-ch10.indd 377 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

378

Introducing Visual Basic for Applications
Visual Basic for Applications (VBA) is the programming language built into Microsoft Access.
VBA is shared among all the Microsoft Office applications, including Word, Excel, Outlook,
PowerPoint, and even Visio. If you aren’t already a VBA programmer, learning the VBA syntax
and how to hook VBA into the Access event model is a definite career builder.

VBA is a key element in most professional Microsoft Access applications. Microsoft provides VBA
in Access because VBA provides significant flexibility and power to Access database applications.
Without a full-fledged programming language like VBA, Access applications would have to rely on
the somewhat limited set of actions offered by Access macros. Although macro programming also
adds flexibility to Access applications, VBA is much easier to work with when you’re programming
complex data-management features or sophisticated user-interface requirements.

Cross-Reference
If you want more information on macros, turn to Chapter 30.

For a number of reasons, this book doesn’t extensively cover Access macro creation. To begin with,
there are enough important topics that I had to choose which topics to cover in detail. Plus, macros are
pretty easy to learn on your own and they’re well documented in the Access online help. There are,
however, two areas where macros can’t be beat: data macros in tables and embedded macros on forms
and controls. The ability to embed macros in tables and forms make macros much more attractive than
in versions prior to Access 2007.

But, by far, the biggest reason I don’t document macros is that macros are guaranteed to be non-
portable to other applications. You can’t use an Access macro anywhere other than in Access. VBA
code, on the other hand, is very portable to Word, Excel, Outlook, Visio, and even Visual Studio .NET
(with changes).

It’s impossible to tell where an Access application might end up. Very often, Access apps are upsized
and upgraded to SQL Server and Visual Studio .NET. The VBA code in your Access applications is read-
ily converted to Visual Basic .NET, and many Access procedures can be used (perhaps with a few
changes) in Word or Excel. VBA is a very portable, useful language, and VBA skills are applicable in
many situations other than building Access applications.

I don’t mean to imply that macros have no place in Access applications, or that macros are necessarily
inferior to VBA code. Microsoft has issues related to previous versions of Access macros. In particular,
macros in Access 2007 and 2010 include variables and simple error handling (mostly jumping to a
named location when an error occurs). These updates to the Access macro engine are significant, but,
in the opinion of many Access developers, they aren’t enough to justify using macros instead of VBA in
professional applications.

The limitations of macros

15_475348-ch10.indd 37815_475348-ch10.indd 378 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
david white
2369869

Chapter 10: VBA Programming Fundamentals

379

If you’re new to programming, try not to become frustrated or overwhelmed by the seeming com-
plexity of the VBA language. As with any new skill, you’re much better off approaching VBA pro-
gramming by taking it one step at a time. You need to learn exactly what VBA can do for you and
your applications, along with the general syntax, statement structure, and how to compose proce-
dures using the VBA language.

This book is chock-full of examples showing you how to use the VBA language to accomplish use-
ful tasks. Each of the procedures you see in this book has been tested and verified to work cor-
rectly. If you find that a bit of code in this book doesn’t work as expected, take the time to ensure
that you’ve used the example code exactly as presented in this book. Very often, the most difficult
problems implementing any programming technique stem from simple errors, such as misspelling
or forgetting to include a comma or parentheses where required.

Note
A programming language is much like a human language. Just as humans use words, sentences, and paragraphs
to communicate with one another, a computer language uses words, statements, and procedures to tell the
computer what you expect it to do. The primary difference between human and computer languages is that a
computer language follows a very strict format. Every word and sentence must be precisely composed because
a computer doesn’t understand context or nuance. Every task must be carefully defined for the computer, using
the syntax supported by the programming language.

Understanding VBA Terminology
Before you plunge into my VBA coverage, here’s a review of some basic VBA terminology:

l Keyword: A word that has special meaning in VBA. For example, in the English language,
the word now simply indicates a point in time. In VBA, Now is the name of a built-in VBA
function that returns the current date and time.

The name Visual Basic is a source of endless confusion for people working with the Microsoft products.
Microsoft has applied the name Visual Basic to a number of different products and technologies. For
more than a decade, Microsoft marketed a stand-alone product named Visual Basic that was, in many
ways, comparable to and competitive with Microsoft Access. Visual Basic was folded into Visual Studio
in its very first version. In 1995, Microsoft added the Visual Basic for Applications (VBA) programming
language to Access, Word, and Excel in Microsoft Office. The name Visual Basic for Applications was
chosen because the VBA syntax is identical in Access, Word, and Excel.

Although the VBA language used in Access is very similar to Visual Basic .NET, they aren’t exactly the
same. You can do some things with VB .NET that can’t be done with Access VBA, and vice versa.

In this book, the expressions “VBA” and “Visual Basic” refer to the programming language built into
Access and should not be confused with the Microsoft VB .NET product.

What’s in a name?

15_475348-ch10.indd 37915_475348-ch10.indd 379 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

380

l Statement: A single VBA word or combination of words that constitutes an instruction to
be performed by the VBA engine.

l Procedure: A collection of VBA statements that are grouped together to perform a certain
task. You might, for example, write a complex procedure that extracts data from a table,
combines the data in a particular way, and then displays the data on a form. Or, you
might write three smaller procedures, each of which performs a single step of the overall
process.

 There are two types of VBA procedures: subs (subroutines) and functions:

l Subroutines perform a single task and then just go away.

l Functions perform a task and then return a value, such as the result of a calculation.

 The example described earlier, where the procedure extracts data from a table, is actually
a subroutine. It performs a specific task; then, when it ends, the procedure just goes away.

 The example where the operation is split into three smaller procedures includes a func-
tion. In this case, the first procedure that opens the database and extracts data most likely
returns the data as a recordset, and the recordset is passed to the other procedures that
perform the data combination and data display.

l Module: Procedures live in modules. If statements are like sentences and procedures are
like paragraphs, modules are the chapters or documents of the VBA language. A module
consists of one or more procedures and other elements combined as a single entity within
the application.

l Variable: Variables are sometimes tricky to understand. Because Access is a database
development tool, it makes sense that VBA code has to have some way of managing the
data involved in the application. A variable is nothing more than a name applied to repre-
sent a data value. In virtually all VBA programs, you create and use variables to hold val-
ues such as customer names, dates, and numeric values manipulated by the VBA code.

VBA is appropriately defined as a language. And, just as with any human language, VBA consists of
a number of words, sentences, and paragraphs, all arranged in a specific fashion. Each VBA sen-
tence is a statement. Statements are aggregated as procedures, and procedures live within modules. A
function is a specific type of procedure — one that returns a value when it’s run. For example,
Now() is a built-in VBA function that returns the current date and time, down to the second. You
use the Now() function in your application whenever you need to capture the current date and
time, such as when assigning a timestamp value to a record.

Starting with VBA Code Basics
Each statement in a procedure is an instruction you want Access to perform.

There are, literally, an infinite number of different VBA programming statements that could appear
in an Access application. Generally speaking, however, VBA statements are fairly easy to read and
understand. Most often, you’ll be able to understand the purpose of a VBA statement based on the
keywords (such as DoCmd.OpenForm) and references to database objects in the statement.

15_475348-ch10.indd 38015_475348-ch10.indd 380 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

381

Each VBA statement is an instruction that is processed and executed by the VBA language engine
built into Microsoft Access. Here’s an example of a typical VBA statement that opens a form:

DoCmd.OpenForm “frmMyForm”, acNormal

Notice that this statement consists of an action (OpenForm) and a noun (frmMyForm). Most VBA
statements follow a similar pattern of action and a reference either to the object performing the
action or to the object that’s the target of the action.

DoCmd is a built-in Access object that performs numerous tasks for you. Think of DoCmd as a little
robot that can perform many different jobs. The OpenForm that follows DoCmd is the task you
want DoCmd to run, and frmMyForm is the name of the form to open. Finally, acNormal is a
modifier that tells DoCmd that you want the form opened in its “normal” view. The implication is
that there are other view modes that may be applied to opening a form; these modes include
Design (acDesign) or Datasheet (acFormDS) view, and Print Preview (acPreview, when
applied to reports).

Note
Writing programming statements and code usually requires more work than the alternatives, such as using
macros or the Access Command Button Wizard. Very often, the VBA code you write refuses to work as
expected. And, sometimes the things you want to do with VBA are just too difficult or might be impossible to
accomplish with VBA. At the same time, VBA programming skills are a great addition to a developer’s résumé.
The ability to efficiently program complex business rules or use code to clean up data before they’re added to a
database are valuable skills.

Although this and the following chapters provide only the fundamentals of VBA programming, you’ll learn
more than enough to be able to add advanced features to your Access applications. You’ll also have a good
basis for deciding whether you want to continue studying this important programming language.

Migrating from Macros to VBA
Should you now convert all the macros in your applications to VBA? The answer depends on what
you’re trying to accomplish. The fact that Access includes VBA doesn’t mean that Access macros
are no longer useful; it simply means that Access developers should learn VBA and add it to their
arsenal of tools for creating Access applications.

VBA isn’t always the answer. Some tasks, such as creating global key assignments, can be accom-
plished only via macros. You can perform some actions more easily and effectively by using a
macro than by writing VBA code.

Note
An Access macro is a stepwise list of actions that you compose using the Access macro editor. Microsoft Word
and Excel use the word macro to refer to procedures written in the VBA programming language, often through
the use of the Word or Excel macro recorder. When working within the Access environment, a macro always
refers to the stepwise set of instructions composed using the Access macro editor. Most Access developers
refer to VBA code as either procedures or modules, and virtually never refer to these objects as macros.

15_475348-ch10.indd 38115_475348-ch10.indd 381 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

382

Knowing when to use macros and when to use VBA
In Access, macros often offer a great way to take care of many details, such as opening reports and
forms. Macros can usually be created very quickly because the arguments for each macro action are
displayed in the macro editor. You don’t have to remember complex or difficult syntax.

You can accomplish many things with the VBA code and with macros:

l Create and use your custom functions. In addition to using built-in Access functions,
VBA enables you to create and work with your own reusable functions.

l Respond to errors. Both macros and VBA handle errors quite well. However, macros are
limited to jumping to a set of macro actions in response to the error, while VBA error han-
dlers can examine what caused the error, take corrective action, and repeat the
statement(s) that caused the error. Macro error handling is quite good, but not quite as
strong as when working with VBA code.

l Use automation to communicate with other Windows applications. You can write
VBA code to see whether a file or some data or value exists before you take some action,
or you can communicate with another Windows application (such as a spreadsheet), pass-
ing data back and forth.

l Use the Windows Application Programming Interface (API). VBA enables you to hook
into many resources provided by Windows, such as determining the user’s Windows login
name, or the name of the computer the user is working on. The Windows API provides a
virtually unlimited number of ways to enhance your Access applications.

Cross-Reference
Turn to Chapter 27 for more on the Windows API.

l Maintain the application. Unlike macros, code can be built into a form or report, making
maintaining the form or report more efficient. Plus, if you move a form or report from one
database to another, the event procedures built into the form or report travel with it.

l Create or manipulate objects. In most cases, you’ll find that you need to work with an
object in Design view. In some situations, however, you might want to manipulate the
definition of an object in code. Using VBA, you can manipulate all the objects in a data-
base, including the database itself.

Access supports embedded macros in forms, reports, and controls. An embedded macro lives
within its host object (form, report, or control), and travels with the object if it is copied to another
Access database. This is a huge improvement over the old Access macro model where it was very
difficult to know which macros were related to which forms and reports. Even then, however,
embedded macros suffer from the performance issues associated with external macros, and they
aren’t portable to any other applications, like Word or Excel.

Converting your existing macros to VBA
As you become comfortable with writing VBA code, you might want to rewrite existing macros as
VBA procedures. As you begin this process, you quickly realize how challenging the effort can be

15_475348-ch10.indd 38215_475348-ch10.indd 382 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

383

as you review every macro in your macro libraries. You can’t cut and paste a macro into a VBA
code module. You have to analyze the task accomplished by each macro action, and then add the
equivalent VBA statements to your code.

Fortunately, Access provides a feature to convert macros to VBA code automatically. One of the
options in the Save As dialog box is Save As Module. You can use this option when a macro file is
highlighted in the Macros object area of the Solution Explorer. This option enables you to convert
an entire macro group to a VBA module in seconds.

To try the conversion process, save the mcrOpenContacts macro in the Chapter10.accdb
database as a module by following these steps:

 1. Open the Macros section of the Navigation Pane, and s elect the mcrOpenContacts
macro.

 2. Click the File button in the upper-left corner of the main Access window to open the
Backstage, and select Save As from the command list.

 The Save As dialog box appears, as shown in Figure 10.1.

 FIGURE 10.1

Saving a macro as a module

 3. Select Module from the drop-down list on the Save As dialog box.

 Access assigns a default name for the new module as Copy of followed by the macro
name. Oddly enough, when you save a macro as a VBA module, Access doesn’t use the
name displayed in the Save As dialog box, nor does it use any name that you enter in the
Save As dialog box.

 The Convert Macro dialog box appears, as shown in Figure 10.2.

 FIGURE 10.2

The Convert Macro dialog box

15_475348-ch10.indd 38315_475348-ch10.indd 383 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

384

 4. Select the options that include error handling and comments, and click Convert.

 Access briefly displays each new procedure in the VBA editor window as it’s converted.
When the conversion process completes, the Conversion Finished! message box
appears.

Figure 10.3 shows the newly created VBA module, Converted Macro–mcrOpenContacts. Notice
that the module and the function within the module are named after the converted macro, regard-
less of any other name you might have entered in the Save As dialog box.

 FIGURE 10.3

The converted module

When you specify that you want Access to include error processing for the conversion, Access
automatically inserts an On Error statement as the first statement in the procedure, telling Access
to branch to an error handler that displays an appropriate message and then exit the function.

Cross-Reference
Handling errors is covered in Chapter 23.

The statement beginning with DoCmd is the code that Access created from the macro’s actions.
DoCmd methods mimic macro actions and perform important tasks such as opening forms and
reports and setting the values of controls.

15_475348-ch10.indd 38415_475348-ch10.indd 384 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

385

Using the Command Button Wizard
One option when adding a button to an Access form is to use the Command Button Wizard.
When Access creates a command button with a wizard, it adds an embedded macro attached to the
button. The embedded macro performs whatever action (open form, open report, and so on) that
you specified when you worked with the wizard. You can open the embedded macro in the macro
editor (described in Chapters 15 and 30) and modify it to fit your needs.

Access supports more than 30 types of command buttons through the Command Button Wizard.
These buttons include finding or printing records, as well as applying a filter to a form’s data. Run
this wizard by adding a command button to a form with the Use Control Wizards option selected
in the Design tab of the Access ribbon. (You have to expand the controls palette to see the Use
Control Wizards option.) Figure 10.4 shows a Go To Next Record command button being created.
Notice that the Command Button Wizard even shows a preview of the image it selects for the but-
ton in the panel at the left side of the wizard dialog box.

 FIGURE 10.4

The Command Button Wizard

The Chapter10.accdb example database includes a form named frmButtonWizardSam-
ples_Macros. This form, shown in Figure 10.5 in Design mode, contains a dozen command
buttons created with the Command Button Wizard. Review the procedures for the buttons on this
form to see how powerful Access macros can be. The buttons on this form don’t actually do any-
thing because there is no data on the form, and the macros have nothing to actually work with, but
they show the variety of actions supported by the command button wizard.

Figure 10.6 shows the code for the Go To First Record command button.

The macro produced by the Command Button Wizard is very simple but effective.

15_475348-ch10.indd 38515_475348-ch10.indd 385 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

386

 FIGURE 10.5

Examples of Command Button Wizard buttons

 FIGURE 10.6

The Go To First Record button’s On Click procedure

Creating VBA Programs
Access has a wide variety of tools that enable you to work with tables, queries, forms, and reports
without ever having to write a single line of code. At some point, you might begin building more
sophisticated applications. You might want to “bulletproof” your applications by providing more
intensive data-entry validation or implementing better error handling.

Some operations can’t be accomplished through the user interface, even with macros. You might find
yourself saying, “I wish I had a way to . . .” or “There just has to be a function that will let me. . . .”
At other times, you find that you’re continually putting the same formula or expression in a query or

15_475348-ch10.indd 38615_475348-ch10.indd 386 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

387

filter. You might find yourself saying, “I’m tired of typing this formula into . . .” or “Doggone it, I
typed the wrong formula in this. . . .”

For situations such as these, you need the horsepower of a high-level programming language such
as VBA. VBA is a modern, structured programming language offering many of the programming
structures available in most programming languages. VBA is extensible (capable of calling Windows
API routines) and can interact through ActiveX Data Objects (ADO), through Data Access Objects
(DAO), and with any Access or VBA data type.

Getting started with VBA programming in Access requires an understanding of its event-driven
environment.

Events and event procedures
In Access, unlike old-fashioned programming environments, the user controls the actions and flow
of the application. The user determines what to do and when to do it, such as changing informa-
tion in a field or clicking a command button. The user determines the flow of action and, through
events, the application determines what action to take or ignore.

In contrast, procedural programming languages require that the programmer determine the flow of
actions that the user must follow. In fact, the programmer must accommodate all possibilities of
user intervention — for example, keystrokes a user might enter in error — and must determine
what actions to take in response to the user.

Using macros and event procedures, you implement the responses to these actions. Access pro-
vides event properties for each control you place on a form. By attaching a VBA procedure to a con-
trol’s event property, you don’t have to worry about the order of actions a user might take on a
particular form.

In an event-driven environment such as Access, the objects (forms, reports, and controls) respond
to events. Basically, an event procedure is VBA code that executes when an event (such as a button
click) occurs. The code is directly attached to the form or report containing the event being pro-
cessed. An Exit command button, for example, closes the form when the user clicks the button.
Clicking the command button triggers its Click event. The event procedure is the VBA code
attached to the Click event. The event procedure automatically runs every time the user clicks
the command button.

There are two types of procedures: subprocedures (often called subs) and functions.

Sub and function procedures are grouped and stored in modules. The Modules object button in the
Navigation Pane contains the common global, or standard, modules that any form or report can
access. You could store all your procedures in a single module, but that wouldn’t be a good idea.
You’ll probably want to group related procedures into separate modules, categorizing them by the
nature of the operations they perform. For example, an Update module might include procedures
for adding and deleting records from a table.

15_475348-ch10.indd 38715_475348-ch10.indd 387 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

388

Subprocedures
A subprocedure (or sub) is the simplest type of procedure in a VBA project. A subprocedure is
nothing more than a container for VBA statements that typically perform a task such as opening a
form or report or running a query. The code in a subprocedure simply executes and then goes
away without leaving a trace other than whatever work it performed.

All Access event procedures are subs. Clicking on a command button triggers the button’s Click
event, for example.

These VBA statements within a sub are the code you want to run every time the procedure is exe-
cuted. The following example shows an Exit command button’s subprocedure:

Sub cmdExit_Click()
 DoCmd.Close
End Sub

The first line of this procedure notifies the VBA engine that the procedure is a sub and that its
name is cmdExit_Click. If parameters (data passed to the procedure) are associated with this
sub, they appear within the parentheses.

There is only one VBA statement within this sub: DoCmd.Close. The End Sub statement at the
bottom ends this procedure. The cmdExit_Click () subprocedure is attached to the Exit but-
ton’s Click event. The event procedure closes the form when the user clicks the Exit command
button.

Functions
A function is very similar to a subprocedure with one major exception: A function returns a value
when it ends. A simple example is the built-in VBA Now() function, which returns the current
date and time. Now() can be used virtually anywhere your application needs to use or display the
current date and time. An example is including Now() in a report header or footer so that the user
knows exactly when the report was printed.

Now() is just one of several hundred built-in VBA functions. As you’ll see throughout this book,
the built-in VBA functions provide useful and very powerful features to your Access applications.

In addition to built-in functions, you might add custom functions that perform tasks required by
your applications. An example is a data transformation routine that performs a mathematical oper-
ation (such as currency conversion or calculating shipping costs) on an input value. It doesn’t mat-
ter where the input value comes from (table, form , query, and so on). The function always returns
exactly the correct calculated value, no matter where the function is used.

Within the body of a function, you specify the function’s return value by assigning a value to the
function’s name (and, yes, it does look pretty strange to include the function’s name within the
function’s body). You then can use the returned value as part of a larger expression. The following
function calculates the square footage of a room:

15_475348-ch10.indd 38815_475348-ch10.indd 388 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

389

Function nSquareFeet(Height As Double, _
 Width As Double) As Double
 ‘Assign this function’s value:
 nSquareFeet = Height * Width
End Function

This function receives two parameters: Height and Width. Notice that the function’s name,
nSquareFeet, is assigned a value within the body of the function. The function is declared as a
Double data type, so the return value is recognized by the VBA interpreter as a Double.

The main thing to keep in mind about functions is that they return values. The returned value is
often assigned to a variable or control on a form or report:

dblAnswer = nSquareFeet(Height, Width)
txtAnswer = nSquareFeet(Height, Width)

If the function (or subroutine, for that matter) requires information (such as the Height and
Width in the case of the nSquareFeet function) the information is passed as arguments
within the parentheses in the function’s declaration.

You’ll read much more about subroutines and functions in the remaining chapters of this book.
You’ll also see many more examples of passing arguments to procedures, returning values from
functions, and using subs and functions to perform complicated work in Access applications.

One last point: Notice the underscore character at the end of the nSquareFeet function’s decla-
ration. A space followed by an underscore at the end of a VBA statement (called a continuation char-
acter) instructs the VBA engine to include the next line as part of the same statement.

Modules
Modules and their procedures are the principal objects of the VBA programming language. The
code that you write is added to procedures that are contained in modules.

Looking at the types of modules
There are two types of VBA code modules in most Access applications. The first type is a free-
standing, independent module that might be accessed by any other object (such as forms and
reports) within the application. These modules are often called standard or global modules. The
second type of module exists with (or behind, if you prefer) the forms and reports in an applica-
tion and is normally accessible only to the form or report and its controls. This second type of
module is usually referred to as form and report modules.

As you create VBA procedures for your Access applications, you use both types of modules.

Cross-Reference
In addition to standard and the modules behind form and reports, Access supports a third type of VBA code
module. Chapter 28 discusses class modules, and the object-oriented programming techniques supported by all
versions of Access since Access 97. Object-oriented programming is an important concept and can lead to sim-
plified programming and efficient code-reuse.

15_475348-ch10.indd 38915_475348-ch10.indd 389 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

390

Standard modules
Standard modules are independent from forms and reports. Standard modules store code that is
used from anywhere within your application. By default, these procedures are often called global or
public because they’re accessible to all elements of your Access application.

Use public procedures throughout your application in expressions, macros, event procedures, and
other VBA code. To use a public procedure, you simply reference it from VBA code in event proce-
dures or any other procedure in your application.

Tip
Procedures run; modules contain. Procedures are executed and perform actions. Modules, on the other hand,
are simple containers, grouping procedures and declarations together. A module can’t be run; instead, you run
the procedures contained within the module.

Standard modules are stored in the Module section of the Navigation Pane. Form and report mod-
ules (see the next section) are attached to their hosts and are accessed through the Form Property
Sheet or Report Property Sheet.

Tip
Generally speaking, you should group related procedures into modules, such as putting all of an application’s
data conversion routines into a single module. Logically grouping procedures make maintenance much easier
because there is a single place in the application for all the procedures supporting a particular activity. Plus,
most modules contain procedures that are related in some way.

Form and report modules
All forms and reports support events. The procedures associated with form and report events can
be macros or VBA code. Every form or report you add to your database contains a VBA code mod-
ule (unless its Has Module property is set to No). This form or report module is an integral part of
the form or report; it’s used as a container for the event procedures you create for the form or
report. The module attached to each form or report is a convenient way to place all the object’s
event procedures in a single location.

Cross-Reference
For more on events, turn to Chapter 12.

Adding VBA event procedures to a form module is very powerful and efficient. Because the module
is an integral and permanent part of the form or report, all the event procedures travel with the
object when it’s exported to another Access database.

Modifying a control’s event procedure is easy: Simply click the builder button (with the ellipsis: . . .)
in the Property Sheet next to the event property name, to open the form’s code module. Figure
10.7 illustrates accessing the Click event procedure of the Delete button on the Contacts form.

15_475348-ch10.indd 39015_475348-ch10.indd 390 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

391

 FIGURE 10.7

Accessing a control’s event procedure from the Property Sheet

Notice the [Event Procedure] in the control’s On Click property. It tells you that there is
code attached to the control’s Click event. Clicking on the builder button (with the ellipsis, or . . .)
in the On Click property opens a dialog box where you can choose to build a macro or VBA
code, or create an expression for the event. Choosing the Code Builder option opens the VBA code
editor, displaying the event procedure.

Tip
Many Access developers prefer to routinely use VBA code for their procedures. You can instruct Access to
always use VBA code by selecting the Always Use Event Procedures check box in the Form/Report Design view
section under Object Designers in the Access Options screen (found in the Backstage).

Caution
Event procedures that directly work with a form or report belong in the module of the form or report. A form’s
module should contain only the declarations and event procedures needed for that form and its controls (but-
tons, check boxes, labels, text boxes, combo boxes, and so on). Placing procedures shared with other forms in
a form’s module really doesn’t make sense and should be avoided.

Creating a new module
Using the Modules section of the Navigation Pane, you create and edit VBA code contained in stan-
dard modules. You could, for example, create a Beep procedure that makes the computer beep as
a warning or notification that something has happened in your program.

15_475348-ch10.indd 39115_475348-ch10.indd 391 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

392

Think of a module as a collection of procedures. Your Access databases can contain thousands of
modules, although most Access applications include only a few dozen standard modules.

Cross-Reference
You’ll see many examples of creating functions and procedures in Chapters 11 through 14.

For this example, you can use the Chapter10.accdb database or open a new blank database.
Add a new module by selecting the Create tab of the Access ribbon, and then clicking on the
Module button in the Other ribbon group (see Figure 10.8).

 FIGURE 10.8

Adding a new module to an Access database

Access opens the VBA editor and adds a new module with a default name (see Figure 10.9).

 FIGURE 10.9

The newly opened module in the VBA editor

15_475348-ch10.indd 39215_475348-ch10.indd 392 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

393

Working in the code window
Whenever you work on VBA procedures in your Access applications, you edit each module in a
separate editor window. Although the code window may be confusing at first, it’s easy to under-
stand and use after you learn how each part works.

Note
Notice that the Access code window doesn’t use the ribbon. Instead, the code window appears much as it has
in every version of Access since Access 2000. Therefore, in this book you’ll see references to the code win-
dow’s toolbar and menu whenever I describe working with Access VBA modules. Don’t confuse references to
the code editor’s toolbar with the main Access window’s ribbon.

When you enter Design mode of a module — whether it’s via a form or report module or the
Modules group on the Navigation Pane — the VBA editor and its menu and toolbar open to enable
you to create or edit your procedures.

When you display VBA code within a form (or report) module, the Object and Procedure drop-
down lists at the top of the code window contain the form’s controls and events. You select these
objects and events to create or edit event procedures for the form. Form and report modules can
also include procedures that are not related to a control’s events.

The Object drop-down list for a standard module offers only one choice: General. The Procedure
drop-down list contains only the names of existing procedures within the standard module.

The code window’s toolbar (shown in Figure 10.9) helps you create new modules and their proce-
dures quickly. The toolbar contains buttons for the most common actions you use to create, mod-
ify, and debug modules.

The code window — the most important area of the VBA editor — is where you create and modify
the VBA code for your procedures. The code window has the standard Windows features to resize,
minimize, maximize, and move the window.

Tip
You can split the code window into two independent edit panes by dragging down the splitter bar (the little
horizontal bar at the very top of the vertical scroll bar at the right edge of the code window). Splitting the win-
dow enables simultaneous editing of two sections of code. Each section of a split VBA code window scrolls
independently, and changes you make in one pane of a split window show up in the other pane. Double-click
the splitter bar to return the window to its former state, or grab the splitter bar with the mouse and drag it to
the top of the code editor window to close the second edit pane. (Microsoft Word and Excel feature a similar
splitter button, making it very easy to edit different parts of the same Word document or Excel worksheet.)

The Immediate window (shown at the bottom of Figure 10.9) enables you to try a procedure while
you’re still in the module. See the “Checking your results in the Immediate window” section later
in this chapter for an example.

Cross-Reference
You’ll read much more about the Immediate window and the other debugging tools in Chapter 14.

15_475348-ch10.indd 39315_475348-ch10.indd 393 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

394

Each VBA code module includes two or more sections:

l A declarations section at the top of the module

l A section for each procedure

The declarations section
You can use the declarations section at the top of a VBA module to declare (define) variables used
in the module’s procedures. A variable is a way to temporarily store values as your code runs.
Examples of variables include

l intCounter (an integer)

l curMySalary (a currency)

l dtmDate (a date/time)

The three-character prefixes (int, cur, dtm) in these variable names constitute a simple naming
convention and are entirely optional. Naming conventions are routinely used by most Access
developers to help document a variable’s data type (integer, currency, and datetime, respectively,
in this case). Anything you can do to document your application helps reduce maintenance costs
and make your code easier to modify later on.

The name you give a variable doesn’t determine the type of data contained within the variable.

Caution
You might have noticed the Option Explicit line at the top of the VBA modules in this chapter’s figures
and example database. Option Explicit is a directive that instructs the VBA compiler to require every vari-
able to be “explicitly” declared within the module. This means that every variable must be declared as a spe-
cific data type (integer, string, and so on).

Explicit variable declaration is always a good idea because it prevents stray variables from creeping into an
application and causing bugs. Without the Option Explicit directive at the top of the module, every time
you type in an identifier that the VBA compiler doesn’t recognize, it automatically creates a new variable by
that name. This means that, when using “implicit” variable declarations, if you’ve been using a variable named
strLastName and type it in incorrectly (for example, strLstName), the VBA compiler creates a new vari-
able named strLstName and begins using it. Bugs caused by simple misspellings can be very difficult to
detect, because the application doesn’t raise any errors, and the only way to detect the cause of the bug is to
go through the code one line at a time until you find the misspelling.

You aren’t required to declare every variable used in a module within the declarations section,
because variables are also declared within procedures. But be aware that all the variables defined in
the declarations section are shared by all the procedures within the module.

Cross Reference
Variable scope (the term that describes where a variable can be used in an application) is described in Chapter 11.

15_475348-ch10.indd 39415_475348-ch10.indd 394 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

395

Creating a new procedure
After you complete any declarations for the module, you’re ready to create a procedure. Follow
these steps to create a procedure called BeepWarning:

 1. Open the Module1 module you previously created, as shown in Figure 10.9.

 2. Go to any empty line in the code window.

 3. Type the code in exactly as shown in Figure 10.10.

 FIGURE 10.10

Entering a new procedure in the code window

 4. Save the module (the save button is in the VBA editor’s toolbar), naming it
basBeepWarning.

Notice that, as you entered the first line of the procedure, Access automatically added the End Sub
statement to the procedure.

In this example, you’re running the program five times. The completed function should look like
the one shown in Figure 10.10.

When BeepWarning actually runs, the five beeps will almost certainly blend together as a single
beep from your computer’s speaker.

If you enter the name of a function you previously created in this module (or in another module
within the database), Access informs you that the function already exists. Access doesn’t enable
you to create another procedure with the same name.

Using IntelliSense
Suppose that you know you want to use a specific command, but you can’t remember the exact
syntax. Access features two types of IntelliSense to help you create each line of code:

15_475348-ch10.indd 39515_475348-ch10.indd 395 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

396

l Auto List Members: Auto List Members is a drop-down list that is automatically dis-
played when you type the beginning of a keyword that has associated objects, properties,
or methods. For example, if you enter DoCmd.Open, a list of the possible options dis-
plays, as shown in Figure 10.11. Scroll through the list box and press Enter to select the
option you want.

 FIGURE 10.11

Access Auto List Members help in a module

 In this example, the OpenForm method is selected (actions associated with an object are
called methods). After choosing an item in the list, more Auto List Members help is dis-
played. Or, if parameters are associated with the keyword, the other type of module help,
Auto Quick Info (see the next bullet), is displayed, as shown in Figure 10.12.

 FIGURE 10.12

Access Auto Quick Info help in a module

15_475348-ch10.indd 39615_475348-ch10.indd 396 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

397

l Auto Quick Info: Auto Quick Info guides you through all the options (called parameters)
for the specific item. The bold word (FormName) is the next parameter available for the
DoCmd object. Figure 10.12 shows that there are many parameters available for the
OpenForm command. The parameters are separated by commas. As each parameter is
entered the next parameter is highlighted in bold. The position of parameters is signifi-
cant; they can’t be rearranged without causing problems. Press the Esc key to hide Auto
List Members help.

 Not every parameter is required for every VBA command. Parameters surrounded by square
brackets (such as View in Figure 10.12) are optional. Access provides reasonable defaults
for all optional arguments that are omitted from the statement using the command.

Compiling procedures
After code has been written, you should compile it to complete the development process.

The compilation step converts the English-like VBA syntax to a binary format that is easily exe-
cuted at runtime. Also, during compilation, all your code is checked for incorrect syntax and other
errors that will cause problems when the user works with the application.

If you don’t compile your Access applications during the development cycle, Access compiles the
code whenever a user opens the application and begins using it. In this case, errors in your code
might prevent the user from using the application, causing a great deal of inconvenience to every-
one involved.

Compile your applications by choosing Debug ➪ Compile from the code window. An error win-
dow appears if the compilation is not successful.

Note
Access compiles all procedures in the module, and all modules in the Access database, not just the current pro-
cedure and module.

Saving a module
When you finish creating a procedure, you save it by saving the module. Save the module by
choosing File ➪ Save, or simply close the code editor to save the module automatically. Access
prompts you for a name to apply to the module if no name has yet been assigned. If the code
you’re working on is part of a form or report’s module, the form or report is saved along with the
module.

Creating procedures in the form or report design window
All forms, reports, and their controls may have event procedures associated with their events. While
you’re in a form or report’s Design view, you can add an event procedure in any of three ways:

l Choose Build Event from the shortcut menu (see Figure 10.13).

l Choose Code Builder in the Choose Builder dialog box when you click the builder but-
ton to the right of an event in the Property dialog box.

15_475348-ch10.indd 39715_475348-ch10.indd 397 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

398

 FIGURE 10.13

The shortcut menu for a control in the form design window

l Type [Event Procedure] into the event property, or select it from the top of the event
drop-down list (see Figure 10.14).

 FIGURE 10.14

The Property Sheet in the form design window

Whether you choose Build Event from the shortcut menu or click the builder button in the
Property dialog box (or press F7, for that matter), the Choose Builder dialog box appears.

15_475348-ch10.indd 39815_475348-ch10.indd 398 4/1/10 1:47 PM4/1/10 1:47 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

399

Choosing the Code Builder item opens the VBA code editor, as shown in Figure 10.15. Clicking
the View Microsoft Access button in the code window’s toolbar toggles between the form designer
and the VBA code window.

 FIGURE 10.15

A form module open in Design view

Editing an existing procedure
There a number of ways to access existing code behind a form or report. These are by far the most
common:

l Click the View Code button in the Tools group in the Access ribbon (with the form or
report open in Design view, of course).

l Select an event procedure from a control’s event property (refer to Figure 10.7).

Opening a standard module is even easier. Simply select Modules in the Navigation Pane; then
right-click on a module and select Design View from the shortcut menu (see Figure 10.16).

Checking your results in the Immediate window
When you write code for a procedure, you might want to try the procedure while you’re in the
module, or you might need to check the results of an expression. The Immediate window (shown
in Figure 10.17) enables you to try your procedures without leaving the module. You can run the
module and check variables. You could, for example, type ? and the name of the variable.

Press Ctrl+G to view the Immediate window, or choose View ➪ Immediate Window in the VBA
code editor.

15_475348-ch10.indd 39915_475348-ch10.indd 399 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

400

 FIGURE 10.16

Selecting a module to edit

 FIGURE 10.17

The Immediate window

15_475348-ch10.indd 40015_475348-ch10.indd 400 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

401

Running the BeepWarning procedure is easy. Simply type BeepWarning into the Immediate
window and press Enter. You might hear five beeps or only a continuous beep because the interval
between beeps is short.

Figure 10.10, earlier in this chapter, also shows the VBA code for this subprocedure.

Cross-Reference
You’ll see many more examples of using the Immediate window in Chapter 14.

Understanding VBA Branching Constructs
The real power of any programming language is its capability to make a decision based on a condi-
tion that might be different each time the user works with the application. VBA provides two ways
for a procedure to execute code conditionally: branching and looping.

Branching
Often, a program performs different tasks based on some value. If the condition is True, the code
performs one action. If the condition is False, the code performs a different action. An applica-
tion’s capability to look at a value and, based on that value, decide which code to run is known as
branching (or conditional processing).

The procedure is similar to walking down a road and coming to a fork in the road; you can go to
the left or to the right. If a sign at the fork points left for home and right for work, you can decide
which way to go. If you need to go to work, you go to the right; if you need to go home, you go to
the left. In the same way, a program looks at the value of some variable and decides which set of
code should be processed.

VBA offers two sets of conditional processing statements:

l If...Then...Else...End If

l Select Case...End Select

The If...Then...Else...End If construct
The If...Then...End If and If...Then...Else...End If construct checks a condition
and, based on the evaluation, perform an action. The condition must evaluate to a Boolean value
(True or False). If the condition is True, the program moves to the line following the If state-
ment. If the condition is False, the program skips to the statement following the Else statement,
if present, or the End If statement if there is no Else clause.

In Figure 10.18, the code examines the value of the ContactType, and if the value is “Buyer”,
the Customer page is made visible; otherwise, the Customer page is made invisible.

15_475348-ch10.indd 40115_475348-ch10.indd 401 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

402

 FIGURE 10.18

The VBA code decides whether to display the Customer page of a tab control.

The Else statement is optional. Use Else to perform an alternative set of actions when the If
condition is False:

If Condition Then
 [Action to perform when Condition is True]
Else
 [Action to perform when Condition is False]
End If

The Then and Else clauses can contain virtually any valid VBA statements, including another
If... Then... Else...End If:

If Condition1 Then
 [Action to perform when Condition1 is True]
Else
 If Condition2 Then
 [Action to perform when Condition2 is True]
 Else
 [Action to perform when Condition2 is False]
 End If
End If

Needless to say, nested If... Then... Else...End If constructs can become quite compli-
cated and confusing. The ElseIf clause sometimes helps reduce this confusion:

If Condition1 Then
 [Action to perform when Condition1 is True]
ElseIf Condition2 Then
 [Action to perform when Condition2 is True]
Else
 [Action to perform when Condition2 is False]
End If

In this example, notice that there is only one End If statement at the bottom of the construct.

15_475348-ch10.indd 40215_475348-ch10.indd 402 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

403

When you have many conditions to test, the If...Then...ElseIf...Else conditions can get
rather unwieldy. A better approach is to use the Select Case...End Select construct.

The Select Case...End Select statement
VBA offers the Select Case statement to check for multiple conditions. Following is the general
syntax of the Select Case statement:

Select Case Expression
 Case Value1
 [Action to take when Expression = Value1]
 Case Value2
 [Action to take when Expression = Value2]
 Case ...
 Case Else
 [Default action when no value matches Expression]
End Select

Notice that the syntax is similar to that of the If...Then statement. Instead of a Boolean condi-
tion, the Select Case statement uses an expression at the very top. Then, each Case clause tests
its value against the expression’s value. When a Case value matches the expression, the program
executes the block of code until it reaches another Case statement or the End Select statement.
VBA executes the code for only one matching Case statement.

Note
If more than one Case statement matches the value of the test expression, only the code for the first match
executes. If other matching Case statements appear after the first match, VBA ignores them.

Figure 10.19 shows Select...Case used by frmDialogContactPrint to decide which of
several reports to open.

 FIGURE 10.19

Using the Select Case statement

15_475348-ch10.indd 40315_475348-ch10.indd 403 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

404

Using the Case Else statement is optional, but it’s always a good idea. The Case Else clause is
always the last Case statement of Select Case and is executed when none of the Case values
matches the expression at the top of the Select Case statement.

In some procedures, you might want to execute a group of statements more than one time. VBA
provides some constructs for repeating a group of statements.

Looping
Another very powerful process that VBA offers is repetitive looping — the capability to execute a
single statement or a group of statements over and over. The statement or group of statements is
repeated until some condition is met.

VBA offers two types of looping constructs:

l Do...Loop

l For...Next

Loops are commonly used to process records within a recordset, change the appearance of controls on
forms, and a number of other tasks that require repeating the same VBA statements multiple times.

The Do...Loop statement
Do...Loop is used to repeat a group of statements while a condition is True or until a condition
is True. This statement is one of the most commonly used VBA looping constructs:

Do [While | Until Condition]
 [VBA statements]
 [Exit Do]
 [VBA statements]
Loop

Alternatively, the While (or Until) may appear at the bottom of the construct:

Do
 [VBA statements]
 [Exit Do]
 [VBA statements]
Loop [While | Until Condition]

Notice that Do...Loop has several options. The While clause causes the VBA statements within
the Do...Loop to execute as long as the condition is True. Execution drops out of the Do...
Loop as soon as the condition evaluates to False.

The Until clause works in just the opposite way. The code within the Do...Loop executes only
as long as the condition is False.

Placing the While or Until clause at the top of the Do...Loop means that the loop never exe-
cutes if the condition is not met. Placing the While or Until at the bottom of the loop means

15_475348-ch10.indd 40415_475348-ch10.indd 404 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

405

that the loop executes at least once because the condition is not evaluated until after the statements
within the loop has executed the first time.

Exit Do immediately terminates the Do...Loop. Use Exit Do as part of a test within the loop:

Do While Condition1
 [VBA statements]
 If Condition2 Then
 Exit Do
 End If
 [VBA statements]
Loop

Exit Do is often used to prevent endless loops. An endless loop occurs when the condition’s state
(True or False) never changes within the loop.

In case you’re wondering, Condition1 and Condition2 in this example may be the same. There is no
requirement that the second condition be different from the condition used at the top of the
Do...Loop.

Figure 10.20 illustrates how a Do loop may be used. In this particular example, a recordset has
been opened and each record is processed within the Do loop. In this example, the company’s
name is printed in the Immediate window, but the data is not modified or used in any way.

 FIGURE 10.20

Using the Do...Loop statement

The While and Until clauses provide powerful flexibility for processing a Do...Loop in your
code.

The For...Next statement
Use For...Next to repeat a statement block a set number of times. The general format of
For...Next is

For CounterVariable = Start To End
 [Statement block]
Next CounterVariable

15_475348-ch10.indd 40515_475348-ch10.indd 405 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

406

We already saw an example of the For...Next loop. Earlier in this chapter, you saw a procedure
named BeepWarning that looks like this:

Sub BeepWarning()
 Dim xBeeps As Integer
 Dim nBeeps As Integer
 nBeeps = 5
 For xBeeps = 1 To nBeeps
 Beep
 Next xBeeps
End Sub

In this procedure, xBeeps is the counter variable, 1 is the start, and nBeeps is the end. In this
example, xBeeps starts at 1 and is incremented at the bottom of the For...Next loop at the
Next xBeeps statement.

An alternate form of For...Next is

For CounterVariable = Start To End Step StepValue
 [Statement block]
Next CounterVariable

The only difference here is the StepValue added to the first statement. The Step keyword fol-
lowed by an increment causes the counter variable to be incremented by the step value each time
the loop executes. For example, if Start is 10 and End is 100 and StepValue is 10, the counter vari-
able starts at 10 and increments by 10 each time the loop executes.

Most of the time, a For...Next loop counts upward, starting at an initial value and incrementing
the counter variable by the amount specified by the step value. In some cases, however, you might
need a loop that starts at a high start value and steps downward to an end value. In this case, use a
negative number as the step value.

The following section explains the special syntax to use when working with objects instead of sim-
ple variables.

Working with Objects and Collections
Very often, you have to work with objects such as the controls on a form or a recordset object con-
taining data extracted from the database. VBA provides several constructs specifically designed to
work with objects and collections of objects.

An object primer
Although Microsoft Access is not object oriented, it’s often referred to as object based. Many of the
things you work with in Access are objects and not just simple numbers and character strings.
Generally speaking, an object is a complex entity that performs some kind of job within an Access
application. Access uses collections to aggregate similar objects as a single group.

15_475348-ch10.indd 40615_475348-ch10.indd 406 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

407

For example, when you build an Access form, you’re actually creating a Form object. As you add
controls to the form, you’re adding them to the form’s Controls collection. Even though you
might add different types of controls (such as buttons and text boxes) to the form, the form’s
Controls collection contains all the controls you’ve added to the form.

You’ll see many, many examples of working with individual objects and collections of objects in
this book. Understanding how objects differ from simple variables is an important step to becom-
ing a proficient Access developer.

Each type of Access object includes its own properties and methods, and shares many other prop-
erties (such as Name) and methods with many other Access objects.

Collections, however, have just a few properties and methods. These are the most important prop-
erties associated with Access collections:

l Name: The name of the collection. Most collection names are capitalized and are the plural
form of the type of object contained within the collection. For example, a form’s controls
are contained within the form’s Controls collection.

l Count: The number of items contained with the collection. A collection with a Count
of 0 is empty. Collections can contain virtually any number of items, but performance
degrades when the Count becomes very large (in excess of 50,000 objects).

l Item: Once you have objects stored in a collection, you need a way to reference individual
objects in the collection. The Item property points to a single item within a collection.

The following example demonstrates setting a property on just one item in a collection:

MyCollection.Item(9).SomeProperty = Value

or:

MyCollection.Item(“ItemName”).SomeProperty = Value

where MyCollection is the name assigned to the collection, SomeProperty is the name of a property
associated with the item, and Value is the value assigned to the property.

This small example demonstrates a couple of important concepts regarding collections:

l There are different ways to reference the items stored in a collection. In most cases,
each item stored in a collection (such as a form’s Controls collection) has a name and
can be referenced using its name:

MyForm.Controls(“txtLastName”).FontBold = True

 As a consequence, each object’s name within a collection must be unique. You can’t, for
example, have two controls with the same name on an Access form.

 The alternate way to reference an object in a collection is with a number that indicates the
item’s ordinal position within the collection. The first item added to a collection is item 0
(zero), the second is item 1, and so on.

15_475348-ch10.indd 40715_475348-ch10.indd 407 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

408

l A collection might contain many thousands of objects. Although performance suffers
when a collection contains several tens of thousands of objects, a collection is a handy way
to store an arbitrary number of items as an application runs. You’ll see several examples of
using collections as storage devices in this book.

The With statement
The With statement enables you to loop through all the members of an object collection, setting
or changing the properties of each member. Any number of statements can appear between the
With and End With statements. With statements can be nested.

As an example, consider the code using the following For...Next looping construct. This code
loops through all members of a form’s Controls collection, examining each control. If the con-
trol is a command button, the button’s font is set to 10 point, Bold, Times New Roman:

Private Sub cmdOld_Click()
 Dim i As Integer
 Dim c As Control
 For i = 0 To Me.Controls.Count - 1
 Set c = Me.Controls(i) ‘Grab a control
 If TypeOf c Is CommandButton Then
 ‘Set a few properties of the control:
 c.FontName = “Times New Roman”
 c.FontBold = True
 c.FontSize = 12
 End If
 Next
End Sub

Don’t be confused by the different expressions you see in this example. The heart of this procedure
is the For...Next loop. The loop begins at zero (the start value) and executes until the i vari-
able reaches the number of controls on the form minus one. (The controls on an Access form are
numbered beginning with zero. The Count property tells you how many controls are on the
form.) Within the loop, a variable named c is pointed at the control indicated by the i variable.
The If TypeOf statement evaluates the exact type of control referenced by the c variable.

Within the body of the If...Then branch, the control’s properties (FontName, FontBold, and
FontSize) are adjusted. You’ll frequently see code such as this when it’s necessary to manipulate
all the members of a collection.

Notice that the control variable is referenced in each of the assignment statements. Referencing
control properties one at a time is a fairly slow process. If the form contains many controls, this
code executes relatively slowly.

An improvement on this code uses the With statement to isolate one member of the Controls
collection and apply a number of statements to that control. The following code uses the With
statement to apply a number of font settings to a single control.

15_475348-ch10.indd 40815_475348-ch10.indd 408 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

409

Private Sub cmdWith_Click()
 Dim i As Integer
 Dim c As Control
 For i = 0 To Me.Controls.Count - 1
 Set c = Me.Controls(i) ‘Grab a control
 If TypeOf c Is CommandButton Then
 With c
 ‘Set a few properties of the control:
 .FontName = “Arial”
 .FontBold = True
 .FontSize = 8
 End With
 End If
 Next
End Sub

The code in this example (cmdWith_Click) executes somewhat faster than the previous example
(cmdOld_Click). Once Access has a handle on the control (With c), it’s able to apply all the
statements in the body of the With without having to fetch the control from the controls on the
form as in cmdOld_Click.

In practical terms, however, it’s highly unlikely that you’ll notice any difference in execution times
when using the With construct as shown in this example. However, when working with massive
sets of data, the With statement might contribute to overall performance. In any case, the With
statement reduces the wordiness of the subroutine, and makes the code much easier to read and
understand.

Think of the With statement as if you’re handing Access a particular item and saying “Here, apply
all these properties to this item.” The previous example said, “Go get the item named x and apply
this property to it” over and over again. The speed difference in these commands is considerable.

The For Each statement
The code in cmdWith_Click is further improved by using the For Each statement to traverse
the Controls collection. For Each walks through each member of a collection, making it avail-
able for examination or manipulation. The following code shows how For Each simplifies the
example.

Private Sub cmdForEach_Click()
 Dim c As Control
 For Each c In Me.Controls
 If TypeOf c Is CommandButton Then
 With c
 .FontName = “MS Sans Serif”
 .FontBold = False
 .FontSize = 8
 End With
 End If
 Next
End Sub

15_475348-ch10.indd 40915_475348-ch10.indd 409 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

410

The improvement goes beyond using fewer lines to get the same amount of work done. Notice that
you no longer need an integer variable to count through the Controls collection. You also don’t
have to call on the Controls collection’s Count property to determine when to end the For loop.
All this overhead is handled silently and automatically for you by the VBA programming language.

The code in this listing is easier to understand than in either of the previous procedures. The pur-
pose of each level of nesting is obvious and clear. You don’t have to keep track of the index to see
what’s happening, and you don’t have to worry about whether to start the For loop at 0 or 1. The
code in the For...Each example is marginally faster than the With...End With example
because no time is spent incrementing the integer value used to count through the loop and Access
doesn’t have to evaluate which control in the collection to work on.

On the CD-ROM
The Chapter10.accdb example database includes frmWithDemo (see Figure 10.21), which contains all the
code discussed in this section. Each of the three command buttons along the bottom of this form uses different
code to loop through the Controls collections on this form, changing the font characteristics of the controls.

 FIGURE 10.21

frmWithDemo is included in Chapter10.accdb.

Looking at Access Options for Developers
Many of the most important features in Access affect only developers. These features are hidden
from end users and benefit only the person building the application. Spend some time exploring
these features so that you fully understand their benefits. You’ll soon settle on option settings that
suit the way you work and the kind of assistance you want as you write your VBA code.

The Editor tab of the Options dialog box
The Options dialog box contains several important settings that greatly influence how you interact
with Access as you add code to your applications. These options are accessed by opening a module
in the VBA code editor, and choosing Tools ➪ Options.

15_475348-ch10.indd 41015_475348-ch10.indd 410 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

411

Auto Indent
Auto Indent causes code to be indented to the current depth in all successive lines of code. For
example, if you inserted four spaces (or tabs) in front of the current line of code, each line of code
following the current line will be automatically indented four spaces.

Auto Syntax Check
When the Auto Syntax Check option is selected, Access checks each line of code for syntax errors
as you enter it in the code editor. Many experienced developers find this behavior intrusive and
prefer to keep this option disabled, instead letting the compiler point out syntax errors. Most of the
syntax errors caught by Auto Syntax Check are the most obvious spelling errors, missing commas,
and so on.

Break on all Errors
Break on All Errors causes Access to behave as if On Error GoTo 0 is always set, regardless of any
error trapping you might set up in code. When this option is selected, Access stops on every error,
making it easier to debug the code.

Require Variable Declaration
This setting automatically inserts the Option Explicit directive into all VBA modules in your
Access application. This option is not selected by default in recent versions of Access.

Tip
When you get used to having Option Explicit set on every module (including global and class modules),
the instances of rogue and unexplained variables (which, in reality, are almost always misspellings of declared
variables) disappear. With Option Explicit set in every module, your code is more self-explanatory and
easier to debug and maintain because the compiler catches every single misspelled variable.

Compile on Demand
Compile on Demand instructs Access to compile modules only when their procedures are required
somewhere else in the database. When this option is unchecked, all modules are compiled anytime
any procedure is called.

Auto List Members
This option pops up a list box containing the members of an object’s object hierarchy in the code
window. In Figure 10.11, the list of Application objects appeared as soon as I typed as the period
following Application in the VBA statement. You select an item from the list by continuing to
type it in or scrolling the list and pressing the spacebar.

Auto Quick Info
When Auto Quick Info has been selected Access pops up syntax help (refer to Figure 10.12) when
you enter the name of a procedure (function, subroutine, or method) followed by a period, space,

15_475348-ch10.indd 41115_475348-ch10.indd 411 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

412

or opening parenthesis. The procedure can be a built-in function or subroutine or one that you’ve
written yourself in Access VBA.

Auto Data Tips
The Auto Data Tips option displays the value of variables when you hold the mouse cursor over a
variable with the module in break mode. Auto Data Tips is an alternative to setting a watch on the
variable and flipping to the Debug window when Access reaches the break point.

Cross-Reference
Debugging Access VBA is described in Chapter 14.

The Project Properties dialog box
All the code components in an Access application, including all the modules, procedures, variables,
and other elements are aggregated as the application’s VBA project. The VBA language engine
accesses modules and procedures as members of the project. Access manages the code in your appli-
cation by keeping track of all the code objects that are included in the project, which is different than
and separate from the code added into the application as runtime libraries and wizards.

Each Access project includes a number of important options. The Project Properties dialog box
(shown in Figure 10.22) contains a number of settings that are important for developers. Open the
Project Properties dialog box by opening a module in the code window, and choosing
Tools ➪ Project Name Properties (where Project Name is the name of your database’s project).

 FIGURE 10.22

The Project Properties dialog box contains a number of interesting options.

15_475348-ch10.indd 41215_475348-ch10.indd 412 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

413

Project Name
Certain changes in an application’s structure require Access to recompile the code in the applica-
tion. For example, changing the code in a global module affects all statements in other modules
using that code, so Access must recompile all the code in the application. Until the code is recom-
piled, Access “decompiles” the application by reverting to the plain-text version of the code stored
in the .accdb file and ignoring the compiled code in the .accdb. This means that each line of
the code must be interpreted at runtime, dramatically slowing the application.

Sometimes insignificant modifications, such as changing the name of the project itself, are suffi-
cient to cause decompilation. This happens because of the hierarchical nature of Access VBA.
Because all objects are “owned” by some other object, changing the name of a high-level object
might change the dependencies and ownerships of all objects below it in the object hierarchy.

Access maintains a separate, independent project name for the code and executable objects in the
application. Simply changing the name of the .accdb file is not enough to decompile the code in
an Access application. By default, the project name is the same as the name of the .accdb, but it’s
not dependent on it. You can assign a unique name to the project with the Project Name text box
in the General tab of the Project Properties dialog box.

Project Description
The project description is, as its name implies, a description for the project. Because this area is so
small, it isn’t possible to add anything of significance that might be helpful to another developer.

Conditional Compilation Arguments
Compiler directives instruct the Access VBA compiler to include or exclude portions of code,
depending on the value of a constant established in the module’s declarations section.

One of the limitations of using compiler directives is that the constant declaration is local to the
module. This means that you have to use the #Const compiler directive to set up the constant in
every module that includes the #If directive. This limitation can make it difficult to remove all the
#Const compiler directives to modify the code at the conclusion of development.

For example, consider a situation in which you want to use conditional compilation to include cer-
tain debugging statements and functions during the development cycle. Just before shipping the
application to its users, you want to remove the compiler directives from the code so that your
users won’t see the message boxes, status-bar messages, and other debugging information. If your
application consists of dozens of forms and modules, you have to make sure you find every single
instance of the #Const directive to make sure you successfully deactivated the debugging code.
(This is why it’s such a good idea to apply a naming convention to the identifiers you use with the
#Const directive.)

Fortunately, Access provides a way for you to set up “global” conditional compilation arguments.
The General tab of the Project Properties dialog box contains the Conditional Compilation
Arguments text box, where you can enter arguments to be evaluated by the conditional compila-
tion directives in your code.

15_475348-ch10.indd 41315_475348-ch10.indd 413 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

414

As an example, assume you’ve set up the following sort of statements in all the modules in your
application:

#If CC_DEBUG2 Then
 MsgBox “Now in ProcessRecords()”
#End If

Instead of adding the constant directive (#Const CC_DEBUG2 = True) to every module in the
application, you might enter the following text into the Conditional Compilation Arguments text box:

CC_DEBUG2 = -1

This directive sets the value of CC_DEBUG2 to –1 (True) for all modules (global and form and
report class modules) in the application. You need to change only this one entry to CC_DEBUG2=0
to disable the debugging statements in all modules in the application.

Note
You don’t use the words True or False when setting compiler constants in the Project Properties dialog box,
even though you do use these values within a VBA code module. You must use –1 for True and 0 for False
in the Project Properties dialog box.

Separate multiple arguments with colons — for example: CC_DEBUG1=0 : CC_DEBUG2=-1.

Command-line arguments
The Options dialog box you open from the File menu (click on the large round Microsoft Office
Button in the upper-left corner of the main Access window, and choose File ➪ Access Options)
provides a number of interesting options. Select the Advanced tab and scroll down to the
Advanced section near the bottom of the dialog box. Notice the Command-Line Arguments text
box at the very bottom of the Advanced section.

Many applications use command-line arguments to influence how the application behaves at run-
time. You could, for example, add a command-line argument to an Access database application
that indicates whether the user was an experienced or novice user. The application might display
help and other assistance that is appropriate for the user’s experience level. (Use the Command
function to return the arguments portion of the command-line used to start Access or the Access
runtime environment.)

Passing a Windows application command-line arguments during development has always been dif-
ficult. Windows requires command-line arguments to be passed as text in the Target text box of a
program icon’s Property Sheet. Figure 10.23 shows such a Property Sheet. The text /User
Novice in the Target text box is the command-line argument passed to the Access application as
it starts up.

15_475348-ch10.indd 41415_475348-ch10.indd 414 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Chapter 10: VBA Programming Fundamentals

415

Before the Command-Line Arguments option was available, there was no easy way to test the
effect of command-line arguments in your application. Use this option to test and debug the com-
mand-line argument code you build into your applications.

 FIGURE 10.23

Adding a command-line argument to a shortcut pointing to a Windows application

Caution
Don’t forget to remove the text from this option before distributing your application to end users. The text you
enter in this option setting is persistent and will remain there until it’s removed or changed.

On the CD-ROM
Use the Command function to return the arguments portion of the command line used to start Access or the
Access runtime environment. The Chapter10.accdb example database includes frmCommandLine (see
Figure 10.24), a demonstration of the Command function. Use the Options dialog box to set some command-
line arguments for Chapter10.accdb; then click on the button on frmCommandLine to see how the
Command function retrieves the arguments.

15_475348-ch10.indd 41515_475348-ch10.indd 415 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Part II: Programming Microsoft Access

416

 FIGURE 10.24

Chapter10.accdb includes frmCommandLine to demonstrate using command-line arguments in your
applications.

Summary
This chapter reviewed some of the important topics as you work with Access VBA. I showed you
the fundamental concepts of creating VBA modules and procedures and touched on the important
topic of event-driven programming in Microsoft Access.

You also read that Access provides a large number of options and settings that influence how you
work with your modules and procedures. The good news is that you have a lot of options control-
ling the appearance and behavior of the Access code editor. There is no bad news about writing
code in Microsoft Access!

The With...End, With, and For Each constructs make it easy and efficient to traverse the
members of object collections. Named arguments give you a lot more flexibility in passing parame-
ters to functions and subroutines.

You continue your exploration of the VBA programming language in the next several chapters. In
Chapters 11 through 15 you learn virtually every fundamental skill necessary to succeed as a VBA
programmer. One important aspect of VBA programming is that it’s a skill with no barriers — your
abilities as an Access VBA programmer are completely transferable to any of the other Microsoft
Office products like Word and Excel.

15_475348-ch10.indd 41615_475348-ch10.indd 416 4/1/10 1:48 PM4/1/10 1:48 PMChapter 10. VBA Programming Fundamentals. Access® 2010 Bible, ISBN: 9780470475348
Prepared for dwhite@nofearzx10.com, david white
Copyright © 2010 by Wiley Publishing, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent
from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	VBA Programming Fundamentals
	Introducing Visual Basic for Applications
	Understanding VBA Terminology
	Starting with VBA Code Basics
	Migrating from Macros to VBA
	Creating VBA Programs
	Understanding VBA Branching Constructs
	Working with Objects and Collections
	Looking at Access Options for Developers
	Summary

